精密测量研究院詹明生科研团队在实验上实现了二维的异核单原子阵列,原子阵列的填充效率达到88%以上,为基于异核单原子阵列的量子计算、量子模拟和超冷分子阵列的研究开辟了新的途径。该研究工作相关研究成果发表在国际著名的物理学学术期刊《物理评论快报》上。并作为本期重要研究成果入选为编辑推荐论文(Editor’s Suggestion)和物理特色论文(Featured in Physics)。同时,美国物理学会网刊配发了解读文章“由两种类型的原子组成的量子计算阵列 (Quantum Computing Arrays Made of Two Types of Atom)”对这一研究成果做了专文评述。
科研动态
精密测量院实现二维无缺陷异核单原子量子计算阵列
精密测量研究院詹明生科研团队在实验上实现了二维的异核单原子阵列,原子阵列的填充效率达到88%以上,为基于异核单原子阵列的量子计算、量子模拟和超冷分子阵列的研究开辟了新的途径。该研究工作相关研究成果发表在国际著名的物理学学术期刊《物理评论快报》上。并作为本期重要研究成果入选为编辑推荐论文(Editor’s Suggestion)和物理特色论文(Featured in Physics)。同时,美国物理学会网刊配发了解读文章“由两种类型的原子组成的量子计算阵列 (Quantum Computing Arrays Made of Two Types of Atom)”对这一研究成果做了专文评述。
当前,原子数目可控、长相干时间、相互作用可调的中性原子体系已成为量子计算、量子模拟和超冷分子阵列研究的重要平台,其中制备任意形状无缺陷的单原子阵列是在该平台开展上述研究的前提和基础。自2016年美国和法国的两个研究团队同步地利用单原子重排技术实现无缺陷单原子阵列的制备以来,人们对单原子阵列的调控能力在不断提升,阵列的维度从一维拓展到二维和三维,原子的数目从50个扩展到数百个;每一次调控能力的提升都拓展了在平台上开展研究的深度和广度,催生了一批重要的实验进展,如量子多体疤痕态的发现、自旋液体的探测等。
然而在量子计算和量子模拟的研究中,当量子比特的数量扩展以后,同核体系在量子逻辑门操作和量子比特的初始化和状态读出时存在突出的的串扰问题。一个避免串扰的途径是利用异种原子共振频率的差异来建立光谱隔离的异种原子量子比特体系。这样的体系既可以用于执行量子计算中不同的任务, 如其中的一种原子量子比特作为纠错码中的校验子,另一种原子作为数据量子比特,如此可能有效地执行纠错并避免串扰;也可以用于量子模拟中,因为额外的操控自由度为多组分多自旋体系的模拟提供了条件。所以相比同核体系,异核原子体系在量子模拟、量子计算和量子精密测量等领域有更加广阔的应用前景。此外,异种原子阵列体系的建立也是实现极性单分子阵列合成的必要途径。
但国际上无缺陷异核原子阵列尚未见报道过,这其中的挑战在于异核单原子的装载和重排中对错位原子的处理。詹明生研究团队在研究员何晓东、许鹏攻关下,通过精确调控激光的失谐和功率解决了两种原子均匀装载的问题,并发展了集团启发算法结合优先级标定的算法有效地排列了错位的原子,实现了15个87Rb加15个85Rb的异核单原子阵列。研究团队演示了该算法对不同二维原子阵列排列的有效性,展示了棋盘型、晶格交叉型、斑马线型等多种构型原子阵列。至此,结合团队前期在异核原子量子纠缠(Phys. Rev. Lett. 119, 160502 (2017))、魔幻光阱异核原子均衡相干时间(Phys. Rev. Lett.124, 153201 (2020))和异核原子相干形成单分子(Science 370, 331–335 (2020) )等方面完成的系列工作,该研究团队已经成功创建了独具特色的双组份单原子阵列平台,未来有望基于该多体量子平台在量子计算、量子模拟、单分子阵列、精密测量、多体物理等方面的研究中取得突出的进展。
从随机装载的异核原子初始阵列排列成多种不同形状的原子构型
该研究成果以“Defect-Free Arbitrary-Geometry Assembly of Mixed-Species Atom Arrays”为题发表在物理学学术期刊《物理评论快报》上,特别研究助理盛诚为第一作者,郑州大学博士后郭瑞军参与了该项研究。
该研究得到了科技部重点研发计划、国家自然科学基金委、中科院先导专项和中科院青年创新促进会项目的资助。